——————————— @

Parallelization of a Dynamic Unstructured
Application using Three Leading Paradigms

Leonid Oliker
NERSC

Lawrence Berkeley National Laboratory
www.nersc.gov/~oliker

Rupak Biswas
MRJ Technology Solutions

NASA Ames Research Center

www.nas.nasa.gov/~rbiswas

Supercomputing ‘99

Motivation and Objectives

+ Real-life computational simulations generally require
irregular data structures and dynamic algorithms

¢ Large-scale parallelism Is needed to solve these
problems within a reasonable time frame

o Several parallel architectures with distinct
programming methodologies have emerged

¢ Report experience with the parallelization of a
dynamic unstructured mesh adaptation code using
three popular programming paradigms on three

state-of-the-art supercomputers

Supercomputing ‘99

2D Unstructured Mesh Adaptation

¢ Powerful tool for efficiently solving computational
problems with evolving physical features (shocks,
vortices, shear layers, crack propagation)

¢ Complicated logic and data structures

o Difficult to parallelize efficiently
e Irregular data access patterns (pointer chasing)
e Workload grows/shrinks at runtime (dynamic load balancing)

¢ Three types of element subdivision

Supercomputing ‘99

Parallel Code Development

¢ Programming paradigms
e Message passing (MPI)
e Shared memory (OpenMP-style pragma compiler directives)
e Multithreading (Tera compiler directives)

¢ Architectures

e Cray T3E e SGI Origin2000 e Tera MTA

¢ Critical factors

e Runtime

e Scalability

e Programmability
e Portability

e Memory overhead

Supercomputing ‘99

Test Problem

¢ Computational mesh to simulate flow over airfoil

¢ Mesh geometrically refined 5 levels in specific regions
to better capture fine-scale phenomena

Serial Code

Distributed-Memory Implementation

¢ 512-node T3E (450 MHz DEC Alpha procs)
¢ 32-node Origin2000 (250 MHz dual MIPS R10K procs)

¢ Code implemented in MPI within PLUM framework
e Initial dual graph used for load balancing adapted meshes
e Parallel repartitioning of adapted meshes (ParMeTiS)
e Remapping algorithm assigns new partitions to processors
o Efficient data movement scheme (predictive & asynchronous)

¢ Three major steps (refinement, repartitioning, remapping)

¢ Overhead
e Programming (to maintain consistent D/S for shared objects)

e Memory (mostly for bulk communication buffers)
Supercomputing ‘99

INITIALIZATION

Initial Mesh
Partitioning

Mapping

FLOW SOLVER

Overview of PLUM

MESH ADAPTOR LOAD BALANCER

Edge Marking Y

Balanced?

Coarsening
Repartitioning

Reassignment

Y Expensive? N

Refinement I— Remapping

Supercomputing ‘99

Performance of MPI Code

¢ More than 32 procs required to outperform serial case

¢ Reasonable scalability for refinement & remapping
+ Scalable repartitioner would improve performance
+ Data volume different due to different word sizes

_ Data Vol (MB)

n ~ Refine Partition Remap Total | Max Total
453 147 12.97 1897 | 68.04 286.80

64 078 1.49 1.81 408 | 6.88 280.30

T3E | 160 0.61 1.70 0.69 3.00 | 4.24 284.41
512 014 4.70 0.25 509 099 310.40

o 1312 1.30 2489 3931 50.11 60.64

02K 8 8.31 1.39 1023 19.93 | 3021 151.75
64 141 2.30 1.69 540 || 417 132.34

L“% . 11 —/
Supercomputlng 99

Shared-Memory Implementation

¢ 32-node Origin2000 (250 MHz dual MIPS R10K procs)

o Complexities of partitioning & remapping absent
e Parallel dynamic loop scheduling for load balance

¢ GRAPH_COLOR strategy (significant overhead)

e Use SGI’s native pragma directives to create IRIX threads
e Color triangles (new ones on the fly) to form independent sets
e All threads process each set to completion, then synchronize

¢ NO_COLOR strategy (too fine grained)

e Use low-level locks instead of graph coloring
e When thread processes triangle, lock its edges & vertices
e Processors idle while waiting for blocked objects

Supercomputing ‘99

' - Py
« Aliiedd

Performance of Shared-Memory Code

¢ Poor performance due to flat memory assumption
¢ System overloaded by false sharing
¢ Page migration unable to remedy problem

¢ Need to consider data locality and cache effects to
improve performance (require partitioning & reordering)

¢ For GRAPH COLO ~ GRAPH COLOR | NO_COLOR
o Cache misses ﬁ Refine Color _ Total

15 M (serial) to 20.8 21.1 41.9
85 M (P=1) 4 17.5 24.0 41.5 21.1

o TLB misses 8| 170 226 396 38.4
73 M (serial)to | 16| 178 220 398 56.8
53 M (P=1) 32| 235 258 493 107.0

64 42.9 29.6 72.5 160. 9
Supercomputing 99

Multithreaded Implementation

¢ 8-processor 250 MHz Tera MTA

e 128 streams/proc, flat hashed memory, full-empty bit for sync
e Executes pipelined instruction from different stream at each

clock tick
¢ Dynamically assigns triangles to threads

e Implicit load balancing

e Low-level synchronization variables ensure adjacent triangles
do not update shared edges or vertices simultaneously

+ No partitioning, remapping, graph coloring required
e Basically, the NO_COLOR strategy

+ Minimal programming to create multithreaded version

Supercomputing ‘99

' - Py
« Aliiedd

Performance of Multithreading Code

o Sufficient instruction level parallelism exists to
tolerate memory access overhead and lightweight
synchronization

¢ Number of streams changed via compiler directive

_ Streams per processor

1 40 60 80 100

[|
1 150.1 3.82 2.72 2.22 2.04
2 1.98 1.40 1.15 1.06
4 1.01 0.74 0.64 0.59
6 0.69 0.51 0.43 0.40
8 0.55 0.41 0.37 0.35

Supercomputing ‘99

' - Py
« Aliiedd

Schematic of Different Paradigms

Distributed memory Shared memory Multithreading

Before and after adaptation (P=2 for distributed memory)
Supercomputing ‘99

Mem |

Incr

~ Scala- Porta-
o]1113Y

Porta-
o] 11147

Serial
MPI

MPI
Shared-mem
Multithreading

R10000
T3E

O2K
02K
MTA

5.4
39.6
0.35

160
64
38

8

100%
100%
10%
2%

70%
70%
5%
7%

Medium
Medium
None
High*

High
High
Medium
Low

+ Different programming paradigms require varying
numbers of operations and overheads

¢ Multithreaded systems offer tremendous potential for
solving some of the most challenging real-life
problems on parallel computers

Supercomputing ‘99

